Part Number Hot Search : 
40WR21 160808 MF432 AC117 PROTO BG3033BQ AC10FGML BH7673
Product Description
Full Text Search
 

To Download IRF7335D1PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  parameter max. units v ds drain-source voltage 30 v i d @ t a = 25c continuous drain current, v gs @ 10v  10 i d @ t a = 70c continuous drain current, v gs @ 10v  8.1 a i dm pulsed drain current  81 p d @t a = 25c power dissipation  2.0 w p d @t a = 70c power dissipation  1.3 linear derating factor 0.02 w/c v gs gate-to-source voltage 12 v e as (6 sigma) single pulse avalanche energy  50 mj t j operating junction and -55 to + 150 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c ? co-pack dual n-channel hexfet ? power mosfet and schottky diode ? ideal for synchronous buck dc-dc converters up to 11a peak output ? low conduction losses ? low switching losses ? low vf schottky rectifier ? lead-free dual fetky  
     
descriptionthe fetky ? family of co-pack hexfet ? mosfets and schottky diodes offers the designer an innovative, board space saving solution for switching regulator and power management applications. advanced hexfet ? mosfets combined with low forward drop schottky results in an extremely efficient device suitable for a wide variety of portable electronicsapplications. the so-14 has been modified through a customized leadframe for enhanced thermal characteristics and multiple die capability making it ideal in a variety of power applications. with these improvements multiple devices can be used in an application with dramatically reduced board space. internal connections enable easier board layout design with reduced stray inductance. IRF7335D1PBF    
    symbol parameter typ. max. units r jl junction-to-drain lead 20 r ja junction-to-ambient  62.5 c/w thermal resistance absolute maximum ratings notes   through  are on page 12 pd- 95272 q1 q2 r ds(on) 13.4 m ? 9.6 m ? q g 13 nc 18 nc q sw 5.5 nc 6.4 nc v sd 1.0v 0.43v and schottky d 1 1 23 4 5 6 7 1413 12 11 10 98 d 1 g 1 s2 s2s2 g 2 s1, d 2 s1, d 2 s1, d 2 s1, d 2 s1, d 2 s1, d 2 s1, d 2 q1 q2 downloaded from: http:///

 2 www.irf.com parameter min typ max min typ max units conditions continuous source current i s 10 10 a mosfet symbol (body diode) showing the pulse source current i sm 81 81 intergral reverse (body diode) p-n junction diode diode forward voltage v sd 1 1.25 0.43 0.50 v t j = 25c, i s = 1.0a,v gs = 0v reverse recovery time t rr 28 31 ns t j = 125c, i f = 8.0a, v r = 15v reverse recovery charge q rr 24 26 nc di/dt = 100a/s reverse recovery time t rr 29 31 ns t j = 125c, i f =8.0a, v r = 15v reverse recovery charge q rr 26 26 nc di/dt =100a/s parameter min typ max min typ max units conditions drain-to-source bv dss 30 30 v v gs = 0v, i d = 250a breakdown voltage static drain-source r ds (on) 13.4 17.5 9.6 12.8 m ? v gs = 4.5v, i d = 10a  on resistance gate threshold voltage v gs(th) 1.0 1.1 v v ds = v gs ,i d = 250a drain-source leakage i dss 30 30 a v ds = 24v, v gs = 0 0.3 10 ma v ds = 24v, v gs = 0, tj = 125c gate-source leakage i gss 100 100 na v gs = 12v current forward transconductance g fs 21 28 s v gs =5v, i d =8.0a, v ds =15v total gate charge q g 13 20 18 27 v gs =4.5v, i d =8.0a, v ds =15v pre-vth q gs1 3.2 5.8 gate-source charge post-vth q gs2 1.4 1.5 nc gate-source charge gate to drain charge q gd 4.1 4.9 switch chg(q gs2 + q gd ) q sw 5.5 6.4 output charge q oss 7.7 11 nc v ds = 16v, v gs = 0 gate resistance r g 4.3 10 2.6 5.0 ? turn-on delay time t d (on) 6.8 8.8 v dd = 16v, i d = 8.0a rise time t r 5.9 3.3 ns v gs = 4.5v turn-off delay time t d (off) 19 17 clamped inductive load fall time t f 9.1 7.0 input capacitance c iss 1500 2300 output capacitance c oss 310 450 pf v ds = 15v, v gs = 0 reverse transfer capacitance c rss 140 180 electrical characteristics source-drain rating & characteristics & schottky current q1-control fet q2-synch fet breakdown voltage ? bv dss/ ? t j 0.025 0.033 v reference to 25c, i d = 1.0ma tem. coefficient s d g downloaded from: http:///

 www.irf.com 3 fig 3 . typical output characteristics fig 1 . typical output characteristics fig 2 . typical output characteristics fig 4 . typical output characteristics fig 5 . typical transfer characteristics fig 6 . typical transfer characteristics q1 - control fet q2 - synchronous fet & schottky typical characteristics 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.25v 20s pulse width tj = 25c vgs top 12v 10v 8.0v 4.5v 3.5v 3.0v 2.5v bottom 2.25v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.25v 20s pulse width tj = 150c vgs top 12v 10v 8.0v 4.5v 3.5v 3.0v 2.5v bottom 2.25v 2.0 3.0 4.0 v gs , gate-to-source voltage (v) 0.1 1.0 10.0 100.0 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 150c v ds = 15v 20s pulse width 0. 1 1 10 100 v ds , drain-to-source voltage (v) 0. 1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.0v 20s pulse width tj = 25c vg s top 10v 5.0v 4.5v 3.0v 2.7v 2.5v 2.2v bottom 2.0v 0. 1 1 10 100 v ds , drain-to-source voltage (v) 0. 1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.0v 20s pulse width tj = 150c vgs top 10v 5.0v 4.5v 3.0v 2.7v 2.5v 2.2v bottom 2.0v 2.0 2. 5 3. 0 3. 5 4. 0 4. 5 v gs , gate-to-source voltage (v) 0. 0 0. 1 1. 0 10. 0 100. 0 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 150c v ds = 15v 20s pulse width downloaded from: http:///

 4 www.irf.com fig 11. typical source-drain diode forward voltage fig. 7 . typical reverse output characteristics fig. 8 . typical reverse output characteristics   
      q1 - control fet q2 - synchronous fet & schottky typical characteristics fig. 9 . typical reverse output characteristics fig. 10 . typical reverse output characteristics 0.0 0.4 0.8 1.2 1.6 2.0 v sd source-to-drain voltage (v) 0 20 40 60 80 i d d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 7.5v 4.5v 3.5v 2.5v 2.0v 1.5v 1.0v bottom 0.0v 20s pulse width tj = 25c 0.0 0.4 0.8 1.2 1.6 2.0 v sd source-to-drain voltage (v) 0 20 40 60 80 i d d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 7.5v 4.5v 3.5v 2.5v 2.0v 1.5v 1.0v bottom 0.0v 20s pulse width tj = 150c 0.0 0.4 0.8 1.2 1.6 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v 0.0 0.4 0.8 1.2 1.6 2.0 v sd source-to-drain voltage (v) 0 20 40 60 80 i d d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 7.5v 4.5v 3.5v 2.5v 2.0v 1. 5v 1. 0v bottom 0.0v 20s pulse width tj = 25c 0.0 0.4 0.8 1.2 1.6 2.0 v sd source-to-drain voltage (v) 0 20 40 60 80 i d d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 7.5v 4.5v 3.5v 2.5v 2.0v 1. 5v 1. 0v bottom 0.0v 20s pulse width tj = 150c 0.0 0.4 0.8 1.2 1.6 2.0 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v downloaded from: http:///

 www.irf.com 5 fig 13 . typical capacitance vs.drain-to-source voltage fig 14 . typical capacitance vs.drain-to-source voltage   
    fig. 15 . gate-to-source voltage vs typical gate charge fig. 16 . gate-to-source voltage vs typical gate charge   
    typical characteristics q1 - control fet q2 - synchronous fet & schottky 1 10 100 v ds , drain-to-source voltage (v) 0 500 1000 1500 2000 2500 3000 3500 4000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0.1 1.0 10.0 100.0 1000.0 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec 1 10 100 v ds , drain-to-source voltage (v) 0 500 1000 1500 2000 2500 c , c a p a c i t a n c e ( p f ) coss crss cis s v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0.1 1.0 10.0 100.0 1000.0 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec 0 5 10 15 20 25 30 q g total gate charge (nc) 0 2 4 6 8 10 12 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v vds= 15v i d = 8.0a 0 5 10 15 20 25 30 q g total gate charge (nc) 0 2 4 6 8 10 12 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v vds= 15v i d = 8.0a downloaded from: http:///

 6 www.irf.com         !     !  
    q1 - control fet q2 - synchronous fet & schottky typical characteristics fig 19 . normalized on-resistance    fig 20 . normalized on-resistance    -60 -40 -20 0 20 40 60 80 100 120 140 160 0.0 0.5 1.0 1.5 2.0 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 4.5v 10a 0 2 04 06 08 01 0 0 i d , drain current (a) 0.009 0.010 0.011 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( ? ) v gs = 4.5v 3.0 3.5 4.0 4.5 v gs, gate -to -source voltage (v) 0.005 0.010 0.015 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( ? ) i d = 10a -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0. 5 1. 0 1. 5 2. 0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 10a v gs = 4.5v 0 20 40 60 80 i d , drai n current (a ) 0.010 0.015 0.020 0.025 0.030 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( ? ) v gs = 4.5v 2.0 4.0 6.0 8.0 10.0 v gs, gate -to -source voltage (v) 0.00 0.01 0.02 0.03 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( ? ) i d = 10a downloaded from: http:///

 www.irf.com 7 fig 25. maximum drain current vs.casetemperature fig. 28 . maximum effective transient thermal impedance, junction-to-ambient fig 27a&b. basic gate charge test circuit and waveform d.u.t. v d s i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -   q g q gs q gd v g charge v ds 9 0% 1 0% v gs t d(on) t r t d(off) t f   
 1     0.1 %       "   + -   fig 26a. switching time test circuit fig 26b. switching time waveforms 25 50 75 100 125 150 t j , junction temperature (c) 0 2 4 6 8 10 12 i d , d r a i n c u r r e n t ( a ) 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 t 1 , rectangular pulse duration (sec) 0.01 0.1 1 10 100 t h e r m a l r e s p o n s e ( z t h j a ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) downloaded from: http:///

 8 www.irf.com schottky diode characteristics fig. 30 - typical values of reverse current vs. reverse voltage fig. 29 - maximum forward voltage drop characteristics 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 forward voltage drop - v f ( v ) 0.1 1 10 100 i n s t a n t a n e o u s f o r w a r d c u r r e n t - i f ( a ) t j = 150c t j = 125c t j = 25c 0 5 10 15 20 25 30 reverse voltage - v r (v) 0.1 1 10 100 1000 10000 100000 r e v e r s e c u r r e n t - i r ( a ) 125c 100c tj = 150c 75c 50c 25c downloaded from: http:///

 www.irf.com 9 fig. 31     for n-channel hexfet   power mosfets 

 

 ?      ?    ?       p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop r e-applied v oltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    #$ % %& &  + - + + + - - -        ? !   "#  ? 
 $%&%% ?     "  '' ? %&%%(
&    fig. 32 gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr downloaded from: http:///

 10 www.irf.com control fet  

   

      
 
   
 
 
         
   
   
 
  !"    
 #
 $  
 %& !" 

  
    #  
  


       
 
  
    #' p loss = p conduction + p switching + p drive + p output this can be expanded and approximated by; p loss = i rms 2 r ds(on ) () + i q gd i g v in f ? ? ? ? ? ? + i q gs 2 i g v in f ? ? ? ? ? ? + q g v g f () + q oss 2 v in f ? ? ? ? "     (
  

          
  %& !" 
  
      


  
   

     %& !" 
  
 "   
   
 
 
    

  
              )    

  


  #
 
  






   
      


   

* 

 

   
   
   % +      
 
    
         
  


 

 
 

  
 %& !"   # 
    #  ,         #
    
 
  
  
-   .  
 /         
 #
   #  
  
 synchronous fet the power loss equation for q2 is approximated by; p loss = p conduction + p drive + p output * p loss = i rms 2 r ds(on) () + q g v g f () + q oss 2 v in f ? ? ? ? ? + q rr v in f ( ) *dissipated primarily in q1. for the synchronous mosfet q2, r ds(on) is an im- portant characteristic; however, once again the im- portance of gate charge must not be overlooked since it impacts three critical areas. under light load the mosfet must still be turned on and off by the con- trol ic so the gate drive losses become much more significant. secondly, the output charge q oss and re- verse recovery charge q rr both generate losses that are transfered to q1 and increase the dissipation in that device. thirdly, gate charge will impact the mosfets susceptibility to cdv/dt turn on. the drain of q2 is connected to the switching node of the converter and therefore sees transitions be-tween ground and v in . as q1 turns on and off there is a rate of change of drain voltage dv/dt which is ca-pacitively coupled to the gate of q2 and can induce a voltage spike on the gate that is sufficient to turn the mosfet on, resulting in shoot-through current . the ratio of q gd /q gs1 must be minimized to reduce the potential for cdv/dt turn on. power mosfet selection for non-isolated dc/dc converters figure a: q oss characteristic downloaded from: http:///

 www.irf.com 11 so-14 package details downloaded from: http:///

 12 www.irf.com notes:  repetitive rating; pulse width limited by max. junction temperature.  pulse width 300 s; duty cycle 2%.  when mounted on 1 inch square copper board.  combined q1,q2 i rms @ pwr v out pins. calculated continuous current based on max allowable junction temperature; switching or other losses will decrease rms current capability  q1 and q2 is tested 100% in production to 50mj to stress and eliminate potentially defective parts. this is not a design for us e value. data and specifications subject to change without notice. this product has been designed and qualified for the consumer market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 08/2006 so-14 tape and reel downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRF7335D1PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X